
Démarrage du cluster : source crc.sh

databricks community edition

https://community.cloud.databricks.com/login.html

Tous les tutos en ligne OpenShift :
https://developers.redhat.com/learn/openshift

https://developers.redhat.com/learn/openshift

Routage en fonction de la source :
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: ingress- wildcard- host
spec:
 rules:
 - host: "foo.bar.com"
 http:
 paths:
 - pathType: Prefix
 path: "/bar"
 backend:
 service:
 name: service1
 port:
 number: 80
 - host: "*.foo.com"
 http:
 paths:
 - pathType: Prefix
 path: "/foo"
 backend:
 service:
 name: service2
 port:
 number: 80

Types d'ingress K8s:
https://kubernetes.io/docs/concepts/services-
networking/ingress/#types- of- ingress

Ingress OpenShift :
https://docs.openshift.com/container- platform/4.9/networking/ingress-
operator.html

Attention à l'impact de s'appuyer sur OpenShift Service Mesh

https://kubernetes.io/docs/concepts/services-networking/ingress/#types-of-ingress
https://kubernetes.io/docs/concepts/services-networking/ingress/#types-of-ingress
https://docs.openshift.com/container-platform/4.9/networking/ingress-operator.html
https://docs.openshift.com/container-platform/4.9/networking/ingress-operator.html

Spécifier les règles de trafic sortant (équivalent firewall) :
https://kubernetes.io/docs/concepts/services-
networking/network- policies/#targeting- a- range- of- ports

Référence vers les stratégies de déploiement :
https://docs.openshift.com/container-
platform/3.11/dev_guide/deployments/deployment_strategies.html#rolling- strategy

https://kubernetes.io/docs/concepts/services-networking/network-policies/#targeting-a-range-of-ports
https://kubernetes.io/docs/concepts/services-networking/network-policies/#targeting-a-range-of-ports
https://docs.openshift.com/container-platform/3.11/dev_guide/deployments/deployment_strategies.html#rolling-strategy
https://docs.openshift.com/container-platform/3.11/dev_guide/deployments/deployment_strategies.html#rolling-strategy

Blue Green :

Sounds good in theory. But there are things to watch out for.
Long running transactions in the green environment. When you switch over to
blue, you have to gracefully handle those outstanding transactions as well as the
new ones. This also can become troublesome if your DB backends cannot handle
this (see below)
Enterprise deployments are not typically amenable to “microservice” style
deployments – that is, you may have a hybrid of microservice style apps, and
some traditional, difficult- to- change- apps working together. Coordinating
between the two for a blue- green deployment can still lead to downtime
Database migrations can get really tricky and would have to be
migrated/rolledback alongside the app deployments. There are good tools and
techniques for doing this, but in an environment with traditional RDBMS, NoSQL,
and file- system backed DBs, these things really need to be thought through
ahead of time; blindly saying you’re doing Blue Green deployments doesn’t help
anything – actually could hurt.
You need to have the infrastructure to do this
If you try to do this on non- isolated infrastructure (VMs, Docker, etc), you run
the risk of destroying your blue AND green environments

A/B Testing

Canary releases
Lastly, Canary releases are a way of sending out a new version of your app into production
that plays the role of a “canary” to get an idea of how it will perform (integrate with other
apps, CPU, memory, disk usage, etc). It’s another release strategy that can mitigate the fact
that regardless of the immense level of testing you do in lower environments you will still
have some bugs in production. Canary releases let you test the waters before pulling the
trigger on a full release.

The faster feedback you get, the faster you can fail the deployment, or proceed cautiously.
For some of the same reasons as the blue- green deployments, be careful of things above
to watch out for; ie, database changes can still trip you up.

Sources SpringBootDemo :
https://nboost.visualstudio.com/DefaultCollection/SpringBootDemo/_git/SpringBootDe
mo (git clone)

https://nboost.visualstudio.com/DefaultCollection/SpringBootDemo/_git/SpringBootDemo
https://nboost.visualstudio.com/DefaultCollection/SpringBootDemo/_git/SpringBootDemo

Service Mesh :
https://www.youtube.com/watch? v=Uo8LEcUMVxg

https://www.youtube.com/watch?v=Uo8LEcUMVxg

